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How to Study Solar magnetic fields?
� Two Physical Effects : Zeeman effect (pure absorption, LTE) and Hanle effect

(scattering, NLTE)
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Part I
Magnetic Turbulence
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Introduction
� Observation and numerical simulation of magneto-convection show that the solar

magnetic fields are turbulent in nature.

� Motivation : effect of a random magnetic field on spectral lines.

� Micro-turbulence : The Mean Zeeman absorption matrix is computed for various
field vector distributions - correlation length � photon mean free path

� Macro-turbulence : The Mean Stokes intensity vector - correlation length � photon
mean free path

� Meso-turbulence : How to compute Mean Stokes parameters? In this case two
scales are comparable, � More General theory is required.
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Previous Work
� In Mihalas book (1978) one can find references to early work on the effects of

velocity turbulence on unpolarized intensity.

� The problem of calculation of mean Zeeman absorption matrix in the micro-turbulent
limit has been addressed fairly early by Dolginov & Pavlov (1972) and Domke &
Pavlov (1979).

� For the general regime of meso-turbulence only few simple attempts are made (Landi
Degl’Innocenti 1994). Therefore we take up this problem for a detailed study.
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How to calculate the Mean Zeeman absorption matrix?
� Randomness of the magnetic field can be expressed in terms of a Probability

Distribution Function (PDF) � ��� �
	 �

� Averaging process simply means performing the following integral :

�� 
� � ��� � � ��� � 	 �

where� is the Zeeman absorption matrix

� Performing the turbulent averaging is not a straight-forward process, since it is a
triple integral which needs a careful numerical integration.

� The details of the analytic theory and the illustrations are presented in :- H. Frisch,
M. Sampoorna, & K. N. Nagendra 2005, Stochastic polarized line formation I.
Zeeman propagation matrix in a random magnetic field, A&A, 442, 11-28
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Different Type of PDFs � ���
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� (a) 1D turbulence : - (Ex : Flux tubes)

� � � � � 	 � � �
��� � � � ��� ��� � � �

 ��!  ! " ��� � � # 	 ! $

where rms fluctuation � � % � ��!  ! " �� 
 & � �� .

� (b) 2D turbulence : - (Ex : Chromospheric Canopy)

� � ��� � 	 � � �
� � � � � � � � � �

 ! � '� � � # ! ' 	 ! ' 	( $ � � � � �! � ' 
 $

where! ' is the random field perpendicular to� " , and( is the field azimuth.
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Different Type of PDFs Contd...
� 3D turbulence : - (Ex : Photospheric fields)

� ) ��� � 	 � � �
��� � � ) �� � )� � � �

 ���  � " ��� � � # ! � *+, - 	 ! 	 - 	( $

where % � � �  � " �� 
 & � ��� � ./ � , - is field inclination.

� We have also recently considered PDFs of the form of Voigt, Stretched Exponentials,
power law etc. (M. Sampoorna, K. N. Nagendra, H. Frisch, & J. O. Stenflo 2007, Zeeman line formation in Solar

magnetic fields : studies with empirical probability distribution functions, A&A, Submitted)

� In the case of 3D turbulence � � 
 can be expressed in terms of generalized Voigt and
Faraday-Voigt functions. They were first introduced by Dolginov & Pavlov (1972).
We have studied properties of these functions and derived simple recurrence relations
to compute them as well as their derivatives. (M. Sampoorna, K. N. Nagendra, & H. Frisch 2007,

Generalized Voigt functions and their derivatives, JQSRT, 104, 71-85)
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Polarized mean opacities for different PDFs

Freq. 0 : in Doppler width units 1 243 5 67 8:9 ;<�= 8:9 ;>? @ ; mean field A B CD A D B EGF B E H B I ; Zeeman

shifts by the mean field and rms fluctuations 1 D A D B3 JK , 1 L3 JK MN O ; 1 3 PRQS TU 7WV X Y ; left

panels : Z[\ ] forF B3 ^`_ andF B3 a ^`_ ; right panels Z [ b ] and Z[c ]
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Model for a random field with ‘finite’ correlation length
� We represent fluctuating magnetic field by a Kubo-Anderson process (KAP).

� Properties of KAP : Markovian; stationary; piece-wise constant; characterized by a
correlation length and a PDF.

� KAP describes the atmosphere as a number of “eddies”.

B

 i-1 τc

   c( τ  )

τ τ i

� In each eddy the field is constant and its
value drawn at random from a PDF. Further
it “jumps” at the boundaries of the eddies.

� d e are jumping points distributed acc. to Pois-
son law with no. of jumps/unit optical depth =

f . “correlation length” or g size of the Eddy

� � h f .

� limit f i j : macro-turbulence

� limit f i k : micro-turbulence
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Stochastic Radiative Transfer Equation
� Transfer equation for the Stokes parameters l ��m $n $po $pq �

	 l h 	 d r � ��s t u � � % l  v &

w :x y x unit matrix, z : Zeeman line absorption matrix, { 7 : continuum optical depth

� In Milne-Eddington (ME) model u � | }~� � h | �� � � � constant (namely opacities
remaining constant). For ME model source vector v � ��� " t � � d r ��� , with

� � � � $ j $ j $ j � ' . Therefore possible to solve transfer equation analytically.

� Residual emergent Stokes parameters (at d r � j )

� � j ��� �
� � % l r � j �  l � j � &

where � 7 C ^ I : continuum intensity
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Mean residual emergent Stokes parameters
� General expression for the mean value

� � � j � 
 �� � � � � t f �
� � � �� � u
� t f � �s t f � � � �� � u
� t f � #

� �
�

with
� � � � � � u

� t f � � �
u

� t f � �s t u
� t f � #

� �
� � ��� �

� h f : correlation length in optical unit of the continuum

� Micro and macro-turbulent limits :
� � � j � 
 � ~ �� � � u � � 
 %s t u �� 
 &� � �

� � � j � 
 � � �� � � � u � %s t u � &� � 
�

� Remarks :

� differences between micro and macro limits significant for u g � j  � j j

� micro-turbulent limit for f � u

H. Frisch, M. Sampoorna, & K. N. Nagendra 2006, Stochastic polarized line formation II. Zeeman line transfer in a random
magnetic field, A&A, 453, 1095-1109

15



Mean residual emergent Stokes parameters
0 : in Doppler width units 1 23 5 67 8�9 ;<�= 8�9 ;>? @ ; �3 � ��  ¡ M � ¢£   ;3 J ^ ; vector magnetic field

distribution ¤ C A I : isotropic Gaussian ; Zeeman shifts by the mean field and rms fluctuations

1 D A D B3 ¥ K , 1 L3 J MN O ; left panels : Z¦\ §c ] forF B3 ^¨_ ; right panels Z¦\ § b ] forF B3 a ^¨_
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Conclusions
� We have developed a general method for solving the turbulent Zeeman line formation

problem. It can be used to model polarized line profiles observed in the solar
spectrum.

� There is a renewed interest on “photospheric general magnetic field”. Recent works
by Stenflo and Trujillo Bueno (NATURE : 2004, 430, 304 and 326) talk of the
“hidden nature” of solar photospheric fields. They suggest that these hidden fields
are certainly turbulent in nature.

� To examine their suggestion, one has to formulate and solve, Zeeman as well as
Hanle effect line transfer problems with turbulent magnetic/velocity fields. Our work
has direct relevance to these efforts.
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� In the first part of my talk I discussed Zeeman line profiles formed under the so
called LTE (local thermodynamic equilibrium).

� LTE is a good assumption in collision dominated parts of the atmosphere
(photospheric layers)

� In the outermost layers of the Sun (upper photosphere and chromosphere), the
densities are small. The dominant means of communication between the atoms is by
scattering of photons and not by collisions.

� Therefore non-LTE is a correct description of radiation transfer in these layers.

� In the next part of my talk I discuss only about line scattering in the presence of
magnetic fields.

� Fields are assumed to be directed (non-turbulent).
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Part II
Scattering theory and Line formation
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Partial Frequency Redistribution (PRD)
� A proper description of the angle-frequency

correlation in a scattering event goes under
the name of partial frequency redistribution.
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Scattering on a 2−level atom in the atomic frame

ΓR

ΓR ΓE

ΓR

ΓR

� transition between two sharp levels :
(unphysical) © ª� « �¬  ¬®­ � .

� radiatively broadened upper level :

© ª ª� ¯ �¬ ­ � « �¬  ¬°­ � .
� radiatively + collisionally broadened

upper level : © ª ª ª � ¯ �¬ ­ � ¯ �¬ � i

Complete Redistribution (CRD).

� both upper and lower level broadened.

� Lab frame functions denoted ± are
obtained by convolving © with a
Maxwellian.
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Observational Motivation to develop scattering theory

Hanle and Zeeman effects in an active region 70 sec of arc inside the Solar limb. Courtesy: Stenflo (1982)

� Strong resonance lines like Ca I 4227 Å are characterized by broad damping wings
surrounding a Doppler core inm , and Large Wing Polarization.

� Such lines can be modeled only when PRD is taken into account, especially the near
wing maxima inn h m . PRD is a better description of line scattering.

� Reduced amplitude of then h m core peak, and appearance of polarization peak in
the core ofo h m , compared to the quite-Sun case, are due to the Hanle effect.
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Polarized PRD Line Scattering Theory - Recent Formulations
� To use such strong lines for magnetic field diagnostics, we need a self-consistent

scattering theory for PRD in arbitrary strength magnetic fields.

� Such a polarized PRD matrix in the presence of arbitrary strength magnetic field, is
called as Hanle-Zeeman Redistribution Matrix (Stenflo 1998).

� Hanle-Zeeman Regime� � the entire field strength regime from zero field to the
completely separated Zeeman components.

� Bommier (1997) has formulated a quantum electrodynamic (QED) theory of
polarized PRD matrices, taking also into account the collisions.

� Bommier & Stenflo (1999) formulated a classical time-dependent oscillator theory of
polarized PRD matrices, taking also into account the collisions.

� Both of them formulated the scattering theory only in the atomic rest frame.

� But we need Laboratory Frame expressions, to plug them in transfer equation.

� We have derived such Lab frame expressions in a series of papers.
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Classical theory of Scattering
� In classical scattering theory the atom is assumed to be a oscillator.

� Let ² ­ be the Electric vector of the radiation incident on this atom (it is the driving
force).

� The oscillator equation for this problem is :
	 � �

	³ � t ´
µ �·¶ ¸ � � t ¹ 	 �
	³ tº � " � �  ´
µ ² ­

� Solving this equation, we finally obtain the scattered electric vector ² , from which
the Stokes parameters are constructed.

� The details of derivation come from standard technique of Classical
Electrodynamics.
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Classical Theory/ Mueller & Jones matrices

ξ, ξ, 

scattering center (atom)

inI outI

= R 
= 

n n

R 

      

     
                        

(3/2)    M
I Iout in

� Mueller Scattering Matrix » gives a
complete description of scattering. It
is written as

» � ¼ �·½ ¾ ½À¿ � ¼ � � $

where ¼ i Mathematical transfor-
mation matrices, and symbol Á denote
complex conjugation.

� Jones scattering matrix½ is given by

Â Ã Ä¨Å Æ Ç
© Æ �³ $ ¬È­ �É­ ÆÊ " Ë

Ì Ã¿ Æ Ì Ä Æ $ Í � j $ÏÎ �

where É­ ÆÊ " i amplitude of incoming monochromatic plane wave,

Ì Ã Ê ÄÆ i geometrical factors for outgoing ( Ð ) and incoming ( u ) radiation,

¬ ­ i frequency of the incident radiation in the atomic frame,

and © Æ is the solution of the oscillator equation.
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Classical Theory/ Oscillator Equation Solution
� Time-dependent solution of the oscillator equation is

© Æ �³ $ ¬ ­ ���  + ¯ Ñ � f "  Í f Ò  ¬ ­ � ¸Ó Ô Õ
´� � Ö ~ ×ÙØ Ú *ÛÜ Û + Ý, Ü Þ ß * Ýà , á

´� � Ö ~ ��â 6� Æ ã â ä� ~ Ñ ��å Ö � Ú Û ÞÜ , * + Û Ý Þ ß * Ý à , á

æ Þ Ýç à� è é, ê Û + Ý, ¯ Ñ � f "  Í f Ò  ¬ë­ ��� �
� +

�

f "  Í ì f Ò  ¬ ­  + ¹ hîí �

f " $ f Ò i line center and Larmor frequency; ì i Landé factor,

¹ i classical damping constant.

� To determine the spectral properties of scattered radiation, take Fourier transform
of the emitted wave train, ï© Æ .

� Truncate the Fourier transform over the collisions time d r � � h ¹ r , with ¹ r the
elastic collisional damping constant.

� Perform the ensemble average � ï© Æ ï©¿ ÆØ 
 to take care of randomness of the collisions.
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Classical Theory/ Bilinear product
� The Bilinear Prod. � ï© Æ ï©¿ ÆØ 
 contains all the PRD info. In atomic frame

� ï© Æ ï©¿ ÆØ 
 Å ê Ý * u Æ� ÆØ ´ ~ Ä ðòñ ðØ óô Ñõ ÑöÆ ÆØ �¬ ­ � « �¬  ¬÷­ � ø Þ� ù á ê Ýú á * êÜ Û á � *ÛÜ Û + Ý, Ü Þ ß �

t ! ê Ý * Ð Æ� ÆØ ´ ~ Ã ðòñ ðØ ô Ñõ ÑöÆ ÆØ �¬ ­ �ô Ñ õ ÑöÆ ÆØ �¬ � $ , Ý,  ê Ýú á * êÜ Û á �Û ÞÜ , *+ Û Ý Þ ß �

û� , � ÞÜ à +ü � ý � Þ Ýç à� ø é, ê á ô Ñ õ ÑöÆ ÆØ � �
� þ ¯ Ñ õ Ñ ö � f "  Í f Ò  ¬ � t ¯¿ Ñõ Ñö � f "  Í­ f Ò  ¬ � ÿ

�Ü , à� Ü , ûà� *� Û Ü , u Æ� ÆØ � � Í  Í­ � � � f Ò

¹ t ¹ r $ Û Ü , Ð Æ� ÆØ � � Í  Í­ � � � f Ò

¹ t ¹ r h � á

ó and! are Branching ratios “imported from quantum theory”.

� Doppler convolution is necessary to go from Atomic i Laboratory frame.

� After transformation � ï© Æ ï©¿ ÆØ 
 consists of “Magnetic Redistribution Functions” in
Lab frame.
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Classical Theory/ Magnetic Redistribution functions
� The type II Magnetic Redistribution functions are given by:

± Æª ª ��� $ � ­ $ - ��� �
� * +, - � � �  
�

�  � ­
� *+, � - h � � #

�
� � t � ­  � Í�� �

� ê Ý * � - h � � $ �
ê Ý * � - h � � á

� Type III Magnetic Redistribution functions are given by

± Æ ÆØª ª ª �� $ � ­ $ - �� �
� � * +, -

õ 	
� 	 	
 ´� �
�
�

�
� t + �� ­ Æ  
 � # � �

� ÆØ* +, -  
 ê Ý Û - $ �
*+, -� á

� Í � Í­ � j correspond to scalar redistribution function of Hummer (1962).

� We have introduced in the above equations

� � f "  f
� f � � � Æ � �  Í� � � � � � ì f Ò
� f � � � � ¹ t ¹ r

í � � f � $

� Ý� � à� � � Ý + û Û è é, ê á � �� $ � �� � �� $ � �  +� ��� $ � � $
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Type II Magnetic Redistribution Functions

� �3 ^ K ^ ^ J , 8 �3 ��� � M 1 � 23 ^ K �

�  B\ \ §"! # double peaked behavior (blue
line)

� For $3 % J # 2 competing processes are
there:

# Freq. coherence (peak 0'& 0)( )

# Mag. coherence (peak at 0 & $ 8 � )

�  +* V\ \ §"! # Freq. coherence dominates (red
line)

�  -, V\ \ §"! # Mag. coherence dominates (red
line)
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Type III Magnetic Redistribution Functions

� For a . j0/ scattering,

± Æ ÆØª ª ªÊ21 3� 4 ��� ­  Í�� � $ � �5 ��  Í­ � � $ � � $

4 and 5 stand for normalized Voigt
( � ) and/or Faraday-Voigt (� ) func-
tions

� Peak position and shape is determined
by5 ��  Í­ � � $ � �

� Amplitude is determined by

4 �� ­  Í�� � $ � �

� Notice the expected CRD like behav-
ior of RFs.

M. Sampoorna, K. N. Nagendra, & J. O. Stenflo 2007a, Hanle-Zeeman redistribution matrix I. Classical theory expressions in

the laboratory frame, ApJ, 663, 625. Here we develop the classical theory framework for Hanle-Zeeman Effect.
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Comparison with QED theory of Bommier (1997)
� To check the correctness of the classical theory expressions, we compared with the

corresponding QED theory expressions, for the normal Zeeman triplet.

� Classical and QED theory give exactly the same expression for� , if we make the
following identification

¹ � 6 7 t 6 ª $ ¹ r � 6 8 $ 9 �;: �� ¹ r h � ø Ý Þ< � � $ �

6 7 i radiative rate;

6 ª i inelastic collision rate;

6 8 i elastic collision rate;

9 �;: � i depolarizing collisions (note 9 � " �� j ).

M. Sampoorna, K. N. Nagendra, & J. O. Stenflo 2007b, Hanle-Zeeman Redistribution Matrix II. Comparison of Classical and

Quantum Electrodynamic Approaches, ApJ, 670, 1485-1504. In this paper, the Equivalence of classical and Quantum PRD

expressions are proved.
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Hanle-Zeeman Line Formation Problem with PRD
� The vector radiative transfer equation for the Stokes vector l � ��m $ n $po $pq � ' is

=>> d l � d $ � $@? ��� %� t © s & l � d $ � $@? �  A � © s tB � � ! â 6 � t v C � � � � d $ � $@? � D $

v C � � � � d $ � $@? ��� 	 ? ­
í � 	 � ­ � �� $? � � ­ $@? ­ � � � l � d $ � ­ $@? ­ � á

{ # line-center optical depth;

E 5 6 # Planck function; F 3 C J ^ ^ ^ IHG ,

I CKJ E [ I # propagation direction of the ray (J E [ defined w.r.t. the slab normal); L3 MNO J ;

z # 4 y 4 Zeeman line absorption matrix;

w # 4 y 4 unity matrix;

¦ # ratio of continuum to line center opacity;

P # photon destruction probability per scattering
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A Perturbation method for Hanle-Zeeman PRD theory
� We solve Hanle-Zeeman line transfer problem with Angle dependent PRD, using a

perturbation approach.

� Because, there does NOT exist any other numerical method to solve this complex
problem.

� The perturbation method employs 2 stages

� In Stage 1 - we solve the Hanle-Zeeman scattering problem neglecting
Zeeman absorption.

� In Stage 2 - the intensity solution from stage 1 is used as a input and the full
problem of Zeeman absorption + Hanle-Zeeman scattering is solved iteratively.

� Iteration is continued until a “convergence is reached”.

� In the past, the strong field Zeeman absorption and weak field Hanle scattering
radiative transfer equation were solved independently - and NOT together. This
calculation is the FIRST attempt to solve the combined problem.
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Some Results from Hanle-Zeeman PRD theory - I

� A nearly . j/ scattering of the unpolar-
ized incident ray (at =­ � j á .Q , R­ � j/ ),
by a very thin (S � j á j � ) slab medium
(almost like single scattering).

T Purely scattering medium, with ± ª ª .

T Canopy-like field ��U � $ R � � �

� . j/ $í Q / � . Field splitting� � varied
in steps of 5 from 0.0008 to 2.5.

T Emergent Soln. for =� j á � � and R� j / .

T Notice a Smooth Transition from Hanle regime for weak fields to Zeeman regime for
strong fields, as the field strength is increased.

T The Stokesq is Generated purely due to Hanle-Zeeman scattering in this case.
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Some Results from Hanle-Zeeman PRD theory - II

T Emergent solution for =� j á � � .

T Isothermal, Self-emitting thin
(S � � j ) slab.

T ± ª ª dominating ( 6 8 h 6 7 � j á � )

T ��U � $ R � �� �/ j/ $í Q / � .

T � � $B $ © �� � � j� ) $ � j� å $ � j� V � .

T Clearly, for very strong fields
there is no significant differ-
ence between the AA and AD
profiles.

T The Hanle 6 � parameter is defined as 6 � � ì ´ ! hW � µ XZY 6 7 [ , in standard notations.
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Conclusions
T In the line formation theories we need to account for partial frequency redistribution

(PRD).

T The relevant PRD functions in arbitrary fields (Hanle-Zeeman effect) are now
derived in our series of papers.

T From the classical approach we derived analytic forms of the Hanle-Zeeman
redistribution matrix in the Laboratory frame, for use in radiative transfer theory
(Sampoorna et al. 2007a, ApJ).

T For a \^] j i _ i j triplet transition, we show the ‘equivalence’ between the
classical and QED theories (Sampoorna et al. 2007b, ApJ).

T We incorporated the Hanle-Zeeman redistribution matrix into the transfer equation
and it is solved using a perturbative approach, which is the first ever solution of this
problem (Sampoorna et al. 2007c, ApJ, Submitted).
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Thank You for your attention
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